OP \$90.00 27798

TRADEMARK ASSIGNMENT COVER SHEET

Electronic Version v1.1 ETAS ID: TM403476

Stylesheet Version v1.2

SUBMISSION TYPE:NEW ASSIGNMENTNATURE OF CONVEYANCE:SECURITY INTEREST

CONVEYING PARTY DATA

Name	Formerly	Execution Date	Entity Type
CALIENT TECHNOLOGIES, INC.		08/26/2016	Corporation: DELAWARE

RECEIVING PARTY DATA

Name:	SILICON VALLEY BANK
Street Address:	3003 TASMAN DR.
City:	SANTA CLARA
State/Country:	CALIFORNIA
Postal Code:	95054
Entity Type:	Corporation: CALIFORNIA

PROPERTY NUMBERS Total: 3

Property Type	Number	Word Mark
Registration Number:	2779898	CALIENT
Registration Number:	2732594	CALIENT NETWORKS
Registration Number:	2779899	CALIENT NETWORKS

CORRESPONDENCE DATA

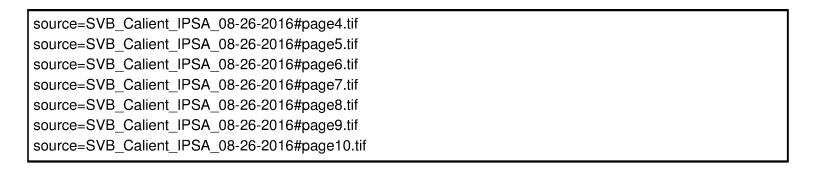
Fax Number: 4088524475

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent

using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 4088417195

Email: dsanchezbentz@vlplawgroup.com


Correspondent Name: Diana Sanchez Bentz
Address Line 1: VLP Law Group LLP

Address Line 4: Gilroy, CALIFORNIA 95020

NAME OF SUBMITTER:	Diana Sanchez Bentz
SIGNATURE:	/dsb1068/
DATE SIGNED:	10/27/2016

Total Attachments: 10

source=SVB_Calient_IPSA_08-26-2016#page1.tif source=SVB_Calient_IPSA_08-26-2016#page2.tif source=SVB_Calient_IPSA_08-26-2016#page3.tif

INTELLECTUAL PROPERTY SECURITY AGREEMENT

This Intellectual Property Security Agreement ("Agreement") is entered into as of August 26, 2016, by and between SILICON VALLEY BANK ("Bank") and CALIENT TECHNOLOGIES, INC. ("Grantor").

RECITALS

- A. Bank has agreed to make certain advances of money and to extend certain financial accommodation to Grantor (the "Loans") in the amounts and manner set forth in that certain Loan and Security Agreement by and between Bank and Grantor dated as of March 12, 2012 (as the same has been and may further be amended, modified or supplemented from time to time, the "Loan Agreement"; capitalized terms used herein are used as defined in the Loan Agreement). Bank is willing to make the Loans to Grantor, but only upon the condition, among others, that Grantor shall grant to Bank a security interest in certain Copyrights, Trademarks, Patents, and Mask Works (as each term is described below) to secure the obligations of Grantor under the Loan Agreement.
- B. Pursuant to the terms of the Loan Agreement, Grantor has granted to Bank a security interest in all of Grantor's right, title and interest, whether presently existing or hereafter acquired, in, to and under all of the Collateral.

NOW, THEREFORE, for good and valuable consideration, receipt of which is hereby acknowledged, and intending to be legally bound, as collateral security for the prompt and complete payment when due of its obligations under the Loan Agreement, Grantor hereby represents, warrants, covenants and agrees as follows:

AGREEMENT

- 1. <u>Grant of Security Interest</u>. To secure its obligations under the Loan Agreement, Grantor grants and pledges to Bank a security interest in all of Grantor's right, title and interest in, to and under its intellectual property (all of which shall collectively be called the "Intellectual Property Collateral"), including, without limitation, the following:
- (a) Any and all copyright rights, copyright applications, copyright registrations and like protections in each work of authorship and derivative work thereof, whether published or unpublished and whether or not the same also constitutes a trade secret, now or hereafter existing, created, acquired or held, including without limitation those set forth on Exhibit A attached hereto (collectively, the "Copyrights");
- (b) Any and all trade secrets, and any and all intellectual property rights in computer software and computer software products now or hereafter existing, created, acquired or held;
- (c) Any and all design rights that may be available to Grantor now or hereafter existing, created, acquired or held;
- (d) All patents, patent applications and like protections including, without limitation, improvements, divisions, continuations, renewals, reissues, extensions and

continuations-in-part of the same, including without limitation the patents and patent applications set forth on Exhibit B attached hereto (collectively, the "Patents");

- (e) Any trademark and servicemark rights, whether registered or not, applications to register and registrations of the same and like protections, and the entire goodwill of the business of Grantor connected with and symbolized by such trademarks, including without limitation those set forth on Exhibit C attached hereto (collectively, the "Trademarks");
- (f) All mask works or similar rights available for the protection of semiconductor chips, now owned or hereafter acquired, including, without limitation those set forth on <u>Exhibit D</u> attached hereto (collectively, the "Mask Works");
- (g) Any and all claims for damages by way of past, present and future infringements of any of the rights included above, with the right, but not the obligation, to sue for and collect such damages for said use or infringement of the intellectual property rights identified above;
- (h) All licenses or other rights to use any of the Copyrights, Patents, Trademarks, or Mask Works and all license fees and royalties arising from such use to the extent permitted by such license or rights;
- (i) All amendments, extensions, renewals and extensions of any of the Copyrights, Trademarks, Patents, or Mask Works; and
- (j) All proceeds and products of the foregoing, including without limitation all payments under insurance or any indemnity or warranty payable in respect of any of the foregoing.
- 2. <u>Recordation</u>. Grantor authorizes the Commissioner for Patents, the Commissioner for Trademarks and the Register of Copyrights and any other government officials to record and register this Agreement upon request by Bank.

Grantor hereby authorizes Bank to (a) modify this Agreement unilaterally by amending the exhibits to this Agreement to include any Intellectual Property Collateral which Grantor obtains subsequent to the date of this Agreement and (b) file a duplicate original of this Agreement containing amended exhibits reflecting such new Intellectual Property Collateral.

- 3. <u>Loan Documents</u>. This Agreement has been entered into pursuant to and in conjunction with the Loan Agreement, which is hereby incorporated by reference. The provisions of the Loan Agreement shall supersede and control over any conflicting or inconsistent provision herein. The rights and remedies of Bank with respect to the Intellectual Property Collateral are as provided by the Loan Agreement and related documents, and nothing in this Agreement shall be deemed to limit such rights and remedies.
- 4. <u>Execution in Counterparts</u>. This Agreement may be executed in counterparts (and by different parties hereto in different counterparts), each of which shall constitute an original, but all of which when taken together shall constitute a single contract. Delivery of an executed counterpart of a signature page to this Agreement by facsimile or in electronic (i.e., "pdf" or "tif" format) shall be effective as delivery of a manually executed counterpart of this Agreement.

- 5. <u>Successors and Assigns</u>. This Agreement will be binding on and shall inure to the benefit of the parties hereto and their respective successors and assigns.
- 6. Governing Law. This Agreement and any claim, controversy, dispute or cause of action (whether in contract or tort or otherwise) based upon, arising out of or relating to this Agreement and the transactions contemplated hereby and thereby shall be governed by, and construed in accordance with, the laws of the United States and the State of California, without giving effect to any choice or conflict of law provision or rule (whether of the State of California or any other jurisdiction).

[Signature page follows.]

1229963.1

IN WITNESS WHEREOF, the parties have caused this Intellectual Property Security Agreement to be duly executed by its officers thereunto duly authorized as of the first date written above.

GRANTOR:

CALIENT TECHNOLOGIES, INC.

By: <u>U. 9770 SE7C9</u>

Title: (100 × 00-0

BANK:

SILICON VALLEY BANK

By: Bryce Gerber

Title: Vice President

EXHIBIT A

Copyrights

Description

Registration/ Application Number Registration/ Application <u>Date</u>

NONE

1229963.1

EXHIBIT B

Patents

<u>Description</u>	Registration/ Application Number	Registration/ Application <u>Date</u>
OPTICAL CIRCUIT SWITCH WITH INTEGRAL CIRCULATORS	9,366,824 14705746	06/14/2016 05/06/2015
MAKING CONNECTIONS THROUGH AN OPTICAL CIRCUIT SWITCH	9,213,143 14322021	12/15/2005 07/02/2014
COMPOUND OPTICAL CIRCUIT SWITCH	9,207,404 20150098678	12/08/2015
MAKING LIGHTLESS CONNECTIONS IN AN OPTICAL CIRCUIT SWITCH	14046825 9,151,903 20150035972 13958872	10/04/2013 10/06/2015 08/05/2013
MIRROR DRIFT COMPENSATION IN AN OPTICAL CIRCUIT SWITCH	9,063,295 20150036973 13958889	06/23/2015 08/05/2013
OPTICAL CIRCUIT SWITCH WITH INTEGRAL CIRCULATORS	9,063,288 13904915	06/23/2015 05/29/2013
COMPOUND OPTICAL CIRCUIT SWITCH WITH SHARED OPTICAL POWER MEASUREMENTS	8,929,696 14047728	01/06/2015 10/07/2013
MIRROR DRIFT COMPENSATION IN AN OPTICAL CIRCUIT SWITCH	8,712,239 14040437	04/29/2014 09/27/2013
MAKING LIGHTLESS CONNECTIONS IN AN OPTICAL CIRCUIT SWITCH	8,682,117 14040448	03/25/2014 09/27/2013
MICROELECTROMECHANICAL SYSTEM WITH BALANCED CENTER OF MASS	8,982,440 13106693	03/17/2015 05/12/2011
MULTICHANNEL OPTICAL POWER METER USING FREE SPACE BEAM SAMPLING	8,822,906 13296126	09/02/2014 11/14/2011
MICROELECTROMECHANICAL SYSTEM WITH A CENTER OF MASS BALANCED BY A MIRROR SUBSTRATE	8,705,159 13106709	04/22/2014 05/12/2011
PRECISION DRIVER CIRCUITS FOR MICRO-ELECTRO- MECHANICAL SYSTEM	8,680,894 13787621	03/25/2014 03/06/2013
WAVELENGTH DEPENDENT OPTICAL SWITCH	8,639,069 10880382	01/28/2014 06/28/2004

MAKING MASS CONNECTIONS IN AN OPTICAL CIRCUIT SWITCH	9,438,968	09/06/2016
	13/938,008	07/09/2013
MULTICHANNEL OPTICAL POWER METER USING A SYNCHRONOUS SCANNER	9,436,002 20150055202	09/06/2016
	14038431	00/26/2012
OPTICAL SWITCH FABRIC WITH REDUNDANCY	6,882,766	09/26/2013 04/19/2005
APPARATUS FOR CREATING AN OPTICAL FIBER LINK	6,540,409	04/19/2003
FEEDBACK STABILIZATION OF A LOSS OPTIMIZED SWITCH	6,456,751	09/24/2002
HIGH UNIFORMITY LENS ARRAYS HAVING LENS CORRECTION AND METHODS FOR FABRICATING THE SAME	6,449,098	09/24/2002
MICRO-ELECTRO-MECHANICAL-SYSTEM (MEMS) MIRROR DEVICE HAVING LARGE ANGLE OUT OF PLANE MOTION USING SHAPED COMBED FINGER ACTUATORS AND METHOD FOR FABRICATING THE SAME	6,628,041	
MICROMACHINED APPARATUS FOR IMPROVED REFLECTION OF LIGHT	6,585,383	
DUAL REFRACTION INDEX COLLIMATOR FOR AN OPTICAL SWITCH	6,483,961	
OPTICAL CROSS-CONNECT SWITCH WITH INTEGRATED OPTICAL SIGNAL TAP	6,668,108	
PASSIVE ALIGNMENT METHOD AND APPARATUS FOR FABRICATING A MEMS DEVICE	6,504,967	
OPTICAL SWITCH HAVING MIRRORS ARRANGED TO ACCOMMODATE FREEDOM OF MOVEMENT	6,560,384	
POSITIONING A MOVABLE REFLECTOR IN AN OPTICAL SWITCH	6,610,974	
SAFE PROCEDURE FOR MOVING MIRRORS IN AN OPTICAL CROSS-CONNECT SWITCH	6,728,016	
MAINTAINING PATH INTEGRITY IN AN OPTICAL SWITCH	6,587,611	
OPTICAL SWITCH HAVING SWITCH MIRROR ARRAYS CONTROLLED BY SCANNING BEAMS	6,643,425	
SHAPED ELECTRODES FOR MICRO-ELECTRO-MECHANICAL- SYSTEM (MEMS) DEVICES TO IMPROVE ACTUATOR	6,825,967	
PERFORMANCE AND METHODS FOR FABRICATING THE SAME ELECTROSTATIC ACTUATOR FOR MICROELECTROMECHANICAL SYSTEMS	6,753,638	
OPTICAL SWITCH WITH INTERNAL MONITORING	6,792,177	
WAVELENGTH POWER EQUALIZATION BY ATTENUATION IN AN OPTICAL SWITCH	6,697,547	
OPTICAL SWITCH PACKAGE	6,819,824	
WAVELENGTH SELECTIVE OPTICAL SWITCH WITH ALIGNED INPUT AND OUTPUT SUBSTRATES	6,778,739	
METHOD AND APPARATUS FOR MONITORING OPTICAL SWITCHES	6,950,215	
MICROMACHINED APPARATUS FOR IMPROVED REFLECTION OF LIGHT	6,612,706	
MICRO-ELECTRO-MECHANICAL-SYSTEM (MEMS) MIRROR DEVICE AND METHODS FOR FABRICATING THE SAME	6,563,106	
A METHOD OF FABRICATING SEMICONDUCTOR WAFERS HAVING MULTIPLE HEIGHT SUBSURFACE LAYERS	6,544,863	
MICROMACHINED APPARATUS FOR IMPROVED REFLECTION OF LIGHT	6,578,974	

METHOD AND APPARATUS FOR INDIRECT ADJUSTMENT OF OPTICAL SWITCH REFLECTORS	6,819,815
OPTICAL TAP FOR AN OPTICAL SWITCH	6,597,825
MULTIPURPOSE TESTING SYSTEM FOR OPTICAL CROSS CONNECT DEVICES	6,959,126
METHOD AND APPARATUS FOR HERMETICALLY SEALING FIBER ARRAY BLOCKS	6,681,473
METHOD AND APPARATUS FOR INTERNAL MONITORING AND CONTROL OF REFLECTORS IN AN OPTICAL SWITCH	6,788,842
METHOD AND APPARATUS TO PROVIDE ALTERNATIVE PATHS FOR OPTICAL PROTECTION PATH SWITCH ARRAYS	7,110,633
OPTICAL AMPLIFICATION IN PHOTONIC SWITCHED CROSSCONNECT SYSTEMS	7,379,668
BOUNDARY ISOLATION FOR MICROELECTROMECHANICAL DEVICES	7,728,339
FEEDBACK STABILIZATION OF A LOSS OPTIMIZED SWITCH	6,728,433
AUTOMATIC STATISTICAL TEST SEQUENCE GENERATOR AND METHODS THEREOF	6,792,377
OPTICAL SYSTEM FOR SELECTABLE DELAY	7,146,069
OPTICAL SWITCH WITH ADJUSTABLE OPTICAL LOSS	6,904,195
ELECTROSTATIC ACTUATOR FOR MICROELECTROMECHANICAL SYSTEMS AND METHODS OF FABRICATION	7,261,826
ELECTROSTATIC ACTUATOR FOR MICROELECTROMECHANICAL SYSTEMS AND METHODS OF FABRICATION	7,098,571
WAVELENGTH ROUTING OPTICAL SWITCH	7,254,293
WAVELENGTH DEPENDENT OPTICAL SWITCH	7,142,744
WAVELENGTH POWER EQUALIZATION BY ATTENUATION IN AN OPTICAL SWITCH	7,248,760
OPTICAL SWITCH FABRIC WITH REDUNDANCY	7,496,252
OPTICAL SWITCH FABRIC WITH REDUNDANCY	7,127,137
OPTICAL SWITCH WITH ADJUSTABLE OPTICAL LOSS	7,676,125
METHOD AND APPARATUS TO PROVIDE MULTI-CHANNEL BULK FIBER OPTICAL POWER DETECTION	7,529,441
BOUNDARY ISOLATION FOR MICROELECTROMECHANICAL DEVICES	7,728,339

EXHIBIT C

Trademarks

<u>Description</u>	Registration/ Application <u>Number</u>	Registration/ Application <u>Date</u>
CALIENT	2779898	11/04/2003
CALIENT NETWORKS	2732594	07/01/2003
CALIENT NETWORKS	2779899	11/04/2003

EXHIBIT D

Mask Works

Description

Registration/ Application Number Registration/ Application <u>Date</u>

NONE

1229963.1

TRADEMARK
REEL: 005908 FRAME: 0652

RECORDED: 10/27/2016