TRADEMARK ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 ETAS ID: TM528765

SUBMISSION TYPE: NEW ASSIGNMENT NATURE OF CONVEYANCE: SECURITY INTEREST

CONVEYING PARTY DATA

Name	Formerly	Execution Date	Entity Type
ESILICON CORPORATION		07/31/2017	Corporation: DELAWARE

RECEIVING PARTY DATA

Name:	RUNWAY GROWTH CREDIT FUND INC.
Street Address:	2925 Woodside Road
City:	Woodside
State/Country:	CALIFORNIA
Postal Code:	94602
Entity Type:	Corporation: MARYLAND

PROPERTY NUMBERS Total: 1

Property Type	Number	Word Mark
Serial Number:	87950807	NEUASIC

CORRESPONDENCE DATA

Fax Number: 4156932222

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent

using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 4156932000

Email: crhem@cooley.com

Correspondent Name: Cooley LLP

Address Line 1: 101 California Street, 5th Floor

Address Line 4: San Francisco, CALIFORNIA 94111

ATTORNEY DOCKET NUMBER:	326420-105
NAME OF SUBMITTER:	C. Rhem
SIGNATURE:	/CR/
DATE SIGNED:	06/21/2019

Total Attachments: 8

source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page1.tif source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page2.tif source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page3.tif source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page4.tif source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page5.tif

source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page6.tif source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page7.tif source=eSilicon - IPSA [7-31-2017] [Updated 6-2019]#page8.tif

INTELLECTUAL PROPERTY SECURITY AGREEMENT

This INTELLECTUAL PROPERTY SECURITY AGREEMENT (as amended, restated, supplemented or otherwise modified, this "Agreement") is entered into as of July 31, 2017 by and between RUNWAY GROWTH CREDIT FUND INC., a Maryland corporation ("Lender") and ESILICON CORPORATION, a Delaware corporation ("Grantor").

RECITALS

- **A.** Lender and Grantor are entering into a Loan and Security Agreement as of the date hereof (as amended, restated, supplemented or otherwise modified from time to time, the "**Loan Agreement**"). Defined terms used herein without definition shall have the meanings set forth in the Loan Agreement.
- **B.** The Obligations are secured by the Collateral, as defined in the Loan Agreement, including without limitation, all of Grantor's Intellectual Property.
- **C.** Grantor's execution and delivery of this Agreement is a condition to the effectiveness of the Loan Agreement.

Now, Therefore, for good and valuable consideration, receipt of which is hereby acknowledged, and intending to be legally bound. Grantor and Lender hereby agree:

AGREEMENT

To secure the Obligations, Grantor grants Lender a security interest in all of Grantor's right, title and interest in its Intellectual Property. Grantor hereby confirms that the attached schedules of Grantor's copyright, patent and trademark applications and registrations, which are registered or filed with the United States Patent and Trademark Office or the United States Copyright Office, as applicable, attached hereto as Exhibits A, B and C hereto, respectively, are complete and accurate as of the date hereof.

Grantor hereby authorizes Lender to (a) modify this Agreement unilaterally by amending the exhibits to this Agreement to include any Intellectual Property which Grantor obtains subsequent to the date of this Agreement, and (b) file a duplicate of this Agreement containing amended exhibits reflecting such new Intellectual Property.

This Agreement shall be exclusively (without regard to any rules or principles relating to conflicts of laws) governed by, enforced and construed in accordance with the laws of the state of California and the federal laws of the United States applicable therein. This Agreement may be executed in counterparts, each of which shall be deemed an original but all of which together shall constitute the same instrument.

1.

IN WITNESS WHEREOF, the parties have caused this Intellectual Property Security Agreement to be duly executed by its officers thereunto duly authorized as of the first date written above.

GRANTOR:

Address of Grantor:	ESILICON CORPORATION
2130 Gold Street, Suite 100 San Jose, CA 95002 Attn: Chief Financial Officer; General Counsel Email: morni@cailicon.com ; cgartin@esilicon.com	By:
Address of Lender:	LENDER: RUNWAY GROWTH CREDIT FUND INC.
2925 Woodside Road Woodside, CA 94062 Attention: David Spreng Email: dspreng@gsvgc.com	By: Title:

IN WITNESS WHEREOF, the parties have caused this Intellectual Property Security Agreement to be duly executed by its officers thereunto duly authorized as of the first date written above.

	GRANIUR:
Address of Grantor:	ESILICON CORPORATION
2130 Gold Street, Suite 100 San Jose, CA 95002	Ву:
Attn: Chief Financial Officer; General Counsel Email: pmarali@esilicon.com; cgartin@esilicon.com	Title:
ogarthissicon.com	Name:
	LENDER:
Address of Lender:	RUNWAY GROWTH CREDIT FUND INC.
2925 Woodside Road Woodside, CA 94062 Attention: David Spreng	Ву:
Email: dspreng@gsvgc.com	Title: C&O
	Name DAVIN SOUGHE.

EXHIBIT A

Copyrights

Description	Registration Number	Registration Date
Component Auto-generator System for Test Chip: End-User Manual, Version 1.0.	TX0007537285	06/05/2012

EXHIBIT B

Patents

Description	Patent / Application Number	Issue / Application Date
Duo content addressable memory (CAM) using a single CAM	9,711,220	07/18/17
Error detection and correction in binary content addressable memory (BCAM)	9,529,669	12/27/16
Parallel signal via structure	9,461,000	10/04/16
Scaling of integrated circuit design including high-level logic components	9,460,257	10/04/16
Integrated circuit design scaling for recommending design point	9,460,256	10/04/16
Scaling of integrated circuit design including logic and memory components	9,460,255	10/04/16
Scaling logic components of integrated circuit design	9,460,254	10/04/16
Integrated circuit design optimization	9,454,636	09/27/16
Scaling memory components of integrated circuit design	9,454,628	09/27/16
Testing of thru-silicon vias	9,435,846	09/06/16
Mixed-sized pillars that are probeable and routable	9,263,409	02/16/16
Variability-aware scheme for high-performance asynchronous circuit voltage regulation	8,572,539	10/29/13
Network of tightly coupled performance monitors for determing the maximum frequency of operation of a semiconductor IC	8,446,224	05/21/13
Asynchronous scheme for clock domain crossing	8,433,875	04/30/13
Pushed-rule bit cells with new functionality	8,355,269	01/15/13
System and method for automating integration of semiconductor work in progress updates	7,756,598	07/13/10
Variability-aware scheme for asynchronous circuit initialization	7,701,255	04/20/10
Crossbar switch with grouped inputs and outputs	7,603,509	10/13/09
System and method for automating integration of semiconductor work in progress updates	7,474,933	01/06/09
Prediction based optimization of a semiconductor supply chain using an adaptive real time work-in-progress tracking system	7,218,980	05/15/07

Method and apparatus for distribution of bandwidth in a switch	7,215,678	05/8/07
Method and flow control in a switch and a switch controlled thereby	7,061,868	06/13/06
Apparatus and method for converting data in serial format to parallel format and vice versa	7,016,346	03/21/06
Device for datastream decoding	7,158,529	01/02/07
Device for datastream decoding	7,002,983	02/21/06
Method and arrangement for managing packet queues in switches	6,977,940	12/20/05
Scheduler method and device in a switch	6,944,171	09/13/05
Queue management system performing one read one write during one cycle by using free queues	6,754,742	06/22/04
Adaptive real-time work-in-progress tracking, prediction, and optimization system for a semiconductor supply chain	6,748,287	06/08/04
Multicasting method and arrangement	6,625,151	09/23/03
Apparatus and method for self-synchronization of data to a local clock	6,604,203	08/05/03
Method and apparatus for content addressable memory with a partitioned match line	6,477,071	11/05/02
CAM/RAM memory device with a scalable structure	6,330,177	12/11/01
Mask arrangement for scramble CAM/RAM structures	6,134,135	10/17/00
Wireless probes	14/963,076	12/08/15
Elongated pad structure	14/963,081	12/08/15
Communication interface architecture using serializer/deserializer	14/810,261	07/27/15
Scaling of integrated circuit design including high-level logic components	15/250,885	08/29/16
Memory optimization in VLSI design using generic memory models	14/628,105	02/20/15
Generating specific memory models using generic memory models for design memories in VLSI	14/628,668	02/23/15
Designing memories in VLSI design using specific memory models generated from generic memory	14/628,676	02/23/15
Error detection and correction in ternary content addressable memory (TCAM)	14/502,954	09/30/14

Duo Content Addressable Memory (CAM) using a single CAM	10032516	07/24/2018
Bandgap Circuits with Voltage Calibration	16/222929	01/14/2019
Trans-impedance Amplifier (TIA) with a T-coil Feedback Loop	16/298945	03/11/2019
Successive Approximation Register (SAR) Analog to Digital Converter (ADC) with Partial Loop-Unrolling	16/239421	01/03/2019
Inductor Design for Electromagnetic Coupling Reduction	16/229825	12/21/2018
Analog Baseline Wander Compensation for ADC based Serdes	16/270512	02/07/2019
Tuning Range for Voltage Controlled Oscillators	16/273047	02/06/2019
Word All Zero Power	16/365542	03/29/2019
Baud-rate Time Error Detector	16/358687	03/29/2019

EXHIBIT C

Trademarks

Description	Registration/ Serial Number	Registration/ Application Date
ESILICON	2,969,847	07/19/05
ESILICON ACCESS	3,603,342	04/07/09
ESILICON	3,412,021	04/15/08
ESILICON	3,591,594	03/17/09
NEUSAIC	87950807	06/06/18

TRADEMARK
REEL: 006675 FRAME: 0727

RECORDED: 06/21/2019