OP \$415.00 90622979 # TRADEMARK ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 ETAS ID: TM685782 NATURE OF CONVEYANCE: SECURITY INTEREST # **CONVEYING PARTY DATA** | Name | Formerly | Execution Date | Entity Type | |-------------------------------|----------|----------------|-----------------------| | Roswell Biotechnologies, Inc. | | 11/01/2021 | Corporation: DELAWARE | #### **RECEIVING PARTY DATA** | Name: | Western Alliance Bank, an Arizona corporation | |-----------------|---| | Street Address: | 55 Almaden Boulevard, Suite 100 | | City: | San Jose | | State/Country: | CALIFORNIA | | Postal Code: | 95113 | | Entity Type: | Corporation: ARIZONA | # **PROPERTY NUMBERS Total: 16** | Property Type | Number | Word Mark | |----------------|----------|--------------------------------| | Serial Number: | 90622979 | | | Serial Number: | 90619099 | ME SURVEILLANCE | | Serial Number: | 90619095 | MESEQ | | Serial Number: | 90619085 | ME DISCOVERY PLATFORM | | Serial Number: | 90619078 | DIGITAL MEETS MOLECULE | | Serial Number: | 90619069 | MOLECULAR ELECTRONICS COMPANY | | Serial Number: | 90619055 | DIGITAL MEETS SINGLE MOLECULES | | Serial Number: | 90408445 | ME BREATHALYZER | | Serial Number: | 90408239 | VIROMETER | | Serial Number: | 90408229 | THE NATURE INSPIRED CHIP | | Serial Number: | 88609475 | ROSWELL BIOTECHNOLOGIES | | Serial Number: | 88609455 | INTELLIGENT SIMPLICITY | | Serial Number: | 88609439 | END GAME SEQUENCING | | Serial Number: | 88609428 | ENDSEQ | | Serial Number: | 88609460 | SUPERSEQ | | Serial Number: | 88609504 | ROSWELL BIOTECHNOLOGIES | # **CORRESPONDENCE DATA** Fax Number: Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent TRADEMARK 900654211 REEL: 007484 FRAME: 0037 using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. **Phone:** 7033826485 Email: DHall@vlplawgroup.com Correspondent Name: Davis Hall Address Line 1: 12703 Hitchcock Court Address Line 4: Reston, VIRGINIA 20191 | NAME OF SUBMITTER: | Davis Hall | |--------------------|-------------| | SIGNATURE: | /DavisHall/ | | DATE SIGNED: | 11/04/2021 | #### **Total Attachments: 9** source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page1.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page2.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page3.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page4.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page5.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page6.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page7.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page8.tif source=(WAL-Roswell) EXECUTED A&R Intellectual Property Security Agreement_11-1-21#page8.tif #### AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT This AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT, dated as of November 1, 2021 (the "Agreement"), between WESTERN ALLIANCE BANK, an Arizona corporation ("Lender") and ROSWELL BIOTECHNOLOGIES, INC. ("Grantor"), is made with reference to the Loan and Security Agreement, dated as of July 22, 2019 (as amended from time to time, the "Loan Agreement"), between Lender and Grantor. Terms defined in the Loan Agreement have the same meaning when used in this Agreement. This Agreement amends and restates in its entirety that Intellectual Property Security Agreement dated as of July 30, 2021. For good and valuable consideration, receipt of which is hereby acknowledged, Grantor hereby covenants and agrees as follows: To secure the Obligations under the Loan Agreement effective as of the date hereof until the IP Release Milestone has been achieved, Grantor hereby grants to Lender a security interest in all right, title, and interest of Grantor in any of the following, whether now existing or hereafter acquired or created in any and all of the following property (collectively, the "Intellectual Property Collateral"): - (a) any and all copyright rights, copyright applications, copyright registrations and like protections in each work or authorship and derivative work thereof (collectively, the "Copyrights"), including the Copyrights described in Exhibit A; - (b) any and all trademark and servicemark rights, whether registered or not, applications to register and registrations of the same and like protections, and the entire goodwill of the business of Borrower connected with and symbolized by such trademarks (collectively, the "Trademarks"), including the Trademarks described in Exhibit B; - (c) any and all patents, patent applications and like protections including without limitation improvements, divisions, continuations, renewals, reissues, extensions and continuations-in-part of the same (collectively, the "Patents"), including the Patents described in Exhibit C; - (d) trade secrets; - (f) design rights; - (g) claims for damages by way of past, present and future infringement of any of the rights included above, with the right, but not the obligation, to sue for and collect such damages for said use or infringement of the intellectual property rights identified above; - (h) licenses or other rights to use any of the Copyrights, Patents or Trademarks, and all license fees and royalties arising from such use to the extent permitted by such license or rights; - (i) amendments, renewals and extensions of any of the Copyrights, Trademarks or Patents; and - (j) proceeds and products of the foregoing, including without limitation all payments under insurance or any indemnity or warranty payable in respect of any of the foregoing. The rights and remedies of Lender with respect to the security interests granted hereunder are in addition to those set forth in the Loan Agreement, and those which are now or hereafter available to Lender as a matter of law or equity. Each right, power and remedy of Lender provided for herein or in the Loan Agreement, or now or hereafter existing at law or in equity shall be cumulative and concurrent and shall be in addition to every right, power or remedy provided for herein, and the exercise by Lender of any one or more of such rights, powers or remedies does not preclude the simultaneous or later exercise by Lender of any other rights, powers or remedies. Notwithstanding the foregoing, the security interest granted hereunder shall automatically and without further action by the parties hereto terminate if and on such date as Borrower achieves the IP Release Milestone (as defined in the Loan Agreement). 941245.2 INTENDING TO BE LEGALLY BOUND, the undersigned have executed this Agreement as of the date first written above. **GRANTOR:** By: ROSWELL BIOTECHNOLOGIES, INC., a Delaware corporation DocuSigned by: Paul W. Mola Name: Paul W. Mola Title: Chief Executive Officer and President Address for Notices: Attn: Paul Mola, CEO and President 11095 Flintkote Ave, Suite A San Diego, CA 92121 LENDER: WESTERN ALLIANCE BANK, an Arizona corporation By: DocuSigned by: Brian Kirkpatrick -- CF1BBDDFCE954AD... Name: Brian Kirkpatrick Title: Vice President Address for Notices: Attn: 55 Almaden Boulevard, Suite 100 San Jose, California 95113 Tel: (408) 556-6501 Fax:(408) 282-1681 2 941245.2 # EXHIBIT A # **COPYRIGHTS** Please Check if No Copyrights Exist ⊠ | Type of Work | Title: | International
Standard Serial
Number (ISSN) | Registration
Number | <u>Filing</u>
<u>Date</u> | Pre -
registered? | |--------------|--------|---|-------------------------|------------------------------|----------------------| *********************** | 941245.2 # EXHIBIT B # TRADEMARKS Please Check if No Trademarks Exist \square | Mark / Title: | U.S. Serial Number | U.S. Registration
Number | USPTO Reference
Number | Filing Date: | |-----------------------------------|--------------------|---|---|-----------------------| | | 90622979 | | | 4-4-2021 | | ME SURVEILLANCE | 90619099 | | *************************************** | 4-1-2021 | | MESEQ | 90619095 | | *************************************** | 4-1-2021 | | ME DISCOVERY PLATFORM | 90619085 | | | 4-1-2021 | | DIGITAL MEETS MOLECULE | 90619078 | | | 4-1-2021 | | MOLECULAR ELECTRONICS COMPANY | 90619069 | | | 4-1-2021 | | DIGITAL MEETS SINGLE
MOLECULES | 90619055 | | | 4-1-2021 | | ME BREATHALYZER | 90408445 | | | 12-23-2020 | | VIROMETER | 90408239 | | | 12-23-2020 | | THE NATURE INSPIRED CHIP | 90408229 | | *************************************** | 12-23-2020 | | ROSWELL
BIOTECHNOLOGIES | 88609475 | | | 9-9-2019 | | INTELLIGENT SIMPLICITY | 88609455 | | *************************************** | 9-9-2019 | | END GAME SEQUENCING | 88609439 | | | 9-9-2019 | | ENDSeq | 88609428 | *************************************** | | 9-9-2019 | | SUPERSeq | 88609460 | | | 9-9-2019 | | ROSWELL
BIOTECHNOLOGIES | 88609504 | 6212312 | | 9-9-2019
12-1-2020 | 941245.2 # EXHIBIT C # **PATENTS** Please Check if No Patents Exist \square | | Patent | | | | |--|----------|------------|---|------------| | <u>Title</u> | No. | App. No. | Issued | Issue Date | | METHOD OF MAKING A MULTI-ELECTRODE
STRUCTURE USABLE IN MOLECULAR SENSING
DEVICES | 9956743 | 13/996,477 | Issued | 5/1/2018 | | METHOD OF MAKING A MULTI-ELECTRODE
STRUCTURE USABLE IN MOLECULAR SENSING
DEVICES | 10597767 | 15/050,270 | Issued | 3/24/2020 | | SUPERHYDROPHOBIC AND SUPEROLEOPHOBIC
NANOSURFACES | 9829456 | 15/220,307 | Issued | 11/28/2017 | | ARYL COMPOUNDS AND POLYMERS AND METHODS
OF MAKING AND USING THE SAME | 10036064 | 15/336,557 | Issued | 7/31/2018 | | SINGLE-SIDED FLOW CELL MOUNT WITH ELECTRICAL, THERMAL, AND FLUIDIC INTERFACE | 10227694 | 15/728,400 | Issued | 3/12/2019 | | POTENTIOSTATIC CONTROL OF SOLUTION POTENTIAL | 10125420 | 15/728,412 | Issued | 11/13/2018 | | SENSOR CHAMBER TEMPERATURE FEEDBACK
CONTROL DERIVED FROM CONCURRENT
COLLECTED DATA QUALITY | 10151722 | 15/796,080 | Issued | 12/11/2018 | | DIFFERENTIAL SIGNALING FOR A MOLECULAR
BIOSENSOR | 10569506 | 15/944,356 | Issued | 2/25/2020 | | IMPEDANCE CHARACTERIZATION VIA TWO-LEVEL SIGNALS | 10584410 | 15/979,135 | Issued | 3/10/2020 | | NONLINEAR IMPEDANCE CHANGE DNA SEQUENCING | | 16/011,065 | | | | BIO-MOLECULAR ELECTRONIC CIRCUITRY | 10508296 | 16/015,028 | Issued | 12/17/2018 | | METHOD TO CONTROL THE NANOWIRE LENGTH IN THE PILIN IN VITRO ASSEMBLY | 10648941 | 16/015,049 | Issued | 5/12/2020 | | ELECTRONIC LABEL-FREE DNA AND GENOME
SEQUENCING | | 16/070,133 | *************************************** | | | ELECTRONIC LABEL-FREE DNA AND GENOME
SEQUENCING | | 16/073,693 | | | | MULTI-ELECTRODE MOLECULAR SENSING DEVICES
AND METHODS OF MAKING THE SAME | 10712334 | 16/073,706 | Issued | 7/14/2020 | | METHOD OF MAKING MULTI-ELECTRODE
MOLECULAR SENSING DEVICES | 10737263 | 16/076,673 | Issued | 8/11/2020 | | MULTI-ELECTRODE MOLECULAR SENSING DEVICES
AND METHODS OF MAKING THE SAME | 10378103 | 16/152,190 | Issued | 8/13/2019 | 941245.2 | | Detect | | | | |---|---------------|------------|-----------|---------------------| | <u>Title</u> | Patent
No. | App. No. | Issued | Issue Date | | MULTI-ELECTRODE MOLECULAR SENSING DEVICES
AND METHODS OF MAKING THE SAME | 10526696 | 16/250,929 | Issued | 1/7/2020 | | MULTI-ELECTRODE MOLECULAR SENSING DEVICES
AND METHODS OF MAKING THE SAME | | 16/321,784 | | | | NUCLEIC ACID SEQUENCING DEVICE CONTAINING
GRAPHENE | | 16/463,195 | | | | SYNTHETIC (POLY)HETEROCYCLIC AROMATIC
BRIDGES | 10902939 | 16/477,106 | Issued | 1/26/2021 | | POLYCYCLIC AROMATIC BRIDGES FOR MOLECULAR
ELECTRONIC SENSORS | | 16/479,257 | | | | SUPERHYDROPHOBIC AND SUPEROLEOPHOBIC
NANOSURFACES | | 16/639,716 | | | | ENZYMATIC CIRCUITS FOR MOLECULAR SENSORS | 11100404 | 16/652,672 | Issued | 8/24/2021 | | ENZYMATIC CIRCUITS FOR MOLECULAR SENSORS | | 16/684,338 | | | | ENZYMATIC CIRCUITS FOR MOLECULAR SENSORS | 11090903 | 16/689,946 | Issued | 8/17/2021 | | ENZYMATIC CIRCUITS FOR MOLECULAR SENSORS | | 16/696,604 | | ******************* | | BINDING PROBE CIRCUITS FOR MOLECULAR
SENSORS | | 16/696,790 | Published | | | TUNABLE NANOPILLAR AND NANOGAP ELECTRODE
STRUCTURES AND METHODS THEREOF | | 16/731,749 | | | | METHOD, APPARATUS AND SYSTEM FOR SINGLE-
MOLECULE POLYMERASE BIOSENSOR WITH
TRANSITION METAL NANOBRIDGE | | 16/741,278 | | | | SINGLE-DNA-BRIDGE BIOSENSORS AND STORAGE
DEVICES COMPRISING SIZE-RESTRICTED, VERTICAL
NANOCONE ELECTRODES, STRUCTURES AND
METHODS | | 16/775,097 | | | | NEAR-ROOM-TEMPERATURE PROCESSABLE
AMORPHOUS SEMICONDUCTOR NANO-RIBBON
BRIDGE BIOSENSORS AND MEMORY DEVICES | 11143617 | 16/831,722 | Issued | 10/12/2021 | | SHAPE-ALTERED GRAPHENE NANOBRIDGE ARRAY
(OPTIONALLY COMPRISING A DNA CONNECTION
BRIDGE), TRANSFER-ALIGNED FOR BIOMOLECULAR
SENSING AND INFORMATION STORAGE | | 16/840,755 | | | | POLYMERASES FOR SEQUENCING USING
MOLECULAR ELECTRONICS | 10913966 | 16/878,484 | Issued | 2/9/2021 | | DNA SEQUENCER WITH SPLIT HEXAGONAL
ELEMENT | | 16/885,952 | | | | DIELECTROPHORETIC TRAPPING OF BIOMOLECULES
IN MOLECULAR SENSORS | | 16/912,580 | | | | NANOSCALE GAP FORMATION BY ETCHING CMOS
VIA-DIELECTRIC INTERFACE | | 17/107,662 | | | | Title | Patent
No. | App No | Issued | Issue Date | |--|---------------|------------|--------|------------| | FLUIDIC ACTUATORS AND FLOWCELLS FOR
SENSORS | | 17/135,375 | | | | METHOD OF WETTING SURFACE NANO-FEATURES VIA CONTROLLEDCONDENSATION | | 17/138,314 | | | | ELECTROCHEMICAL FOULING TO PREVENT
NANOELECTRODE SENSOR REUSE | | 17/354,900 | | | | MICROFLUIDIC FLOW WITH VAPOR GAP INCLUSIONS
FOR LOW-NOISEAPPLICATIONS | | 17/373,763 | | | | FLOW CELL REAGENT HOMOGENIZATION VIA
ELECTRIC FIELD MODULATION | | 17/374,973 | | | | GATELESS TO MULTI-GATED MOLECULAR
BIOSENSORS COMPRISING WIDTHREDUCED,ENZYME
ATTACHABLE NANOBRIDGES | | 17/387,897 | | | | BIOMOLECULAR SENSORS AND METHODS | | 17/465,804 | | | | BIOMOLECULAR SENSORS AND METHODS | | 17/476,424 | | | | NANOPARTICLE FABRICATION | | 17/476,427 | | | | NANOPARTICLE FABRICATION | <u> </u> | 17/483,710 | | | | MOLECULAR SENSORS AND RELATED METHODS | | 17/598,854 | | | | Molecular Electronics for Multiplex Viral Detection in the Field | | 17/602,999 | | | | METHODS AND APPARATUS FOR MEASURING
ANALYTES USING LARGE SCALE MOLECULAR
ELECTRONICS SENSOR ARRAYS | D913,523 | 29/723,554 | Issued | 3/15/2021 | | MASSIVELY PARALLEL DNA SEQUENCING
APPARATUS | | 63/008,641 | | | | MASSIVELY PARALLEL DNA SEQUENCING
APPARATUS | | 63/009,948 | | | | MULTI-ELECTRODE MOLECULAR SENSING DEVICES
AND METHODS OF MAKING THE SAME | | 63/009,956 | | | | MODIFIED NUCLEOTIDE TRIPHOSPHATES FOR
MOLECULAR ELECTRONIC SENSORS | | 63/020,452 | | | | System, Method and Apparatus for Molecular Electronic Applications | | 63/028,796 | | | | SOLID STATE SEQUENCING DEVICES COMPRISING
TWO-DIMENSIONAL LAYER MATERIALS | | 63/028,914 | | | | METHODS AND SYSTEMS FOR DNA DATA STORAGE | | 63/039,337 | | | | METHODS AND SYSTEMS FOR DNA DATA STORAGE | <u> </u> | 63/042,487 | | | | POLYCYCLIC AROMATIC BRIDGES FOR MOLECULAR
ELECTRONIC SENSORS | | 63/052,428 | | | | | η | | | | |---|---------------|------------|--------|------------| | <u>Title</u> | Patent
No. | App. No. | Issued | Issue Date | | SUPERHYDROPHOBIC AND SUPEROLEOPHOBIC
NANOSURFACES | | 63/063,565 | | | | SUPERHYDROPHOBIC AND SUPEROLEOPHOBIC
NANOSURFACES | | 63/065,493 | | | | SINGLE MOLECULE NANOPARTICLE NANOWIRE FOR
MOLECULAR ELECTRONIC SENSING | | 63/073,625 | | | | SINGLE MOLECULE NANOPARTICLE NANOWIRE FOR
MOLECULAR ELECTRONIC SENSING | | 63/078,894 | | | | BINDING PROBE CIRCUITS FOR MOLECULAR
SENSORS | | 63/080,673 | | | | BINDING PROBE CIRCUITS FOR MOLECULAR
SENSORS | | 63/085,874 | | | | PROCESSIVE ENZYME MOLECULAR ELECTRONIC
SENSORS FOR DNA DATA STORAGE | | 63/123,025 | | | | METHODS, APPARATUS AND SYSTEMS FOR AMPLIFICATION-FREE DNA DATA STORAGE | | 63/128,300 | | | | METHODS, APPARATUS AND SYSTEMS FOR
AMPLIFICATION-FREE DNA DATA STORAGE | | 63/128,409 | | | | METHOD FOR IDENTIFYING AND QUANTIFYING
ORGANIC AND BIOCHEMICAL SUBSTANCES | | 63/136,747 | | | | CONDUCTIVE SYNTHETIC PEPTIDES FOR
MOLECULAR ELECTRONICS | | 63/136,754 | | | | Molecular Electronics for Automated Wastewater Monitoring for SARS-CoV-2 Virus | | 63/136,805 | | | | METHOD, APPARATUS AND SYSTEM FOR SINGLE-
MOLECULE POLYMERASE BIOSENSOR WITH
TRANSITION METAL OR SILICON NANOBRIDGE | | 63/137,223 | | | | Breathalyzer for SARS-CoV-2 Viral Particles | | 63/137,237 | | | | SYSTEM, METHOD AND APPARATUS FOR PERSONAL VIROMETER | | 63/137,249 | | | | NUCLEOTIDES FOR SINGLE MOLECULE SEQUENCING USING MOLECULAR ELECTRONIC SENSOR | | 63/137,257 | | | | SIMPLIFIED PLATFORM FOR DETECTION OF
POLYMERASE OR TAGGED NUCLEOTIDES WITH
PRIMER AND TEMPLATE USING MOLECULAR
ELECTRONIC SENSOR | | 63/137,271 | | | | HEXAGONAL FLOW CELL WITH INTEGRATED CMOS
SENSOR ARRAY | | 63/137,277 | | | | System, Apparatus and Method for Molecular Diagnostic | | 63/137,286 | | | | Molecular Electronic Sensors for Precision Telemedicine Diagnostics | | 63/137,303 | | | | Title | Patent
No. | App. No. | Issued | Issue Date | |--|---------------|------------|--------|------------| | SURFACE FUNCTIONALIZATION OF ELECTRODES
FOR SEQUENCING APPLICATIONS | | 63/137,328 | | | | CRISPR Enzyme Circuits for Molecular Electronic Sensors | | 63/137,340 | | | | CO-EXPRESSION OF CONDUCTIVE PEPTIDE AND
METAL-BINDING PEPTIDE ALONG WITH DNA
POLYMERASE FOR DIRECT ONE-STEP BIOSENSOR
FUNCTIONALIZATION | | 63/137,349 | | | | WIDTH-REDUCED SEMICONDUCTOR NANORIBBON
BRIDGES ON-SUBSTRATE OR ON-CHIP FOR
MOLECULAR BIOSENSING | | 63/137,368 | | | | MOLECULAR ELECTRONIC SENSORS FOR DETECTING
SARS-COV-2 VIRUS | | 63/137,414 | | | | MOLECULAR ELECTRONIC SENSORS FOR GENETIC
ANALYSIS BY HYBRIDIZATION | | 63/137,451 | | | | MOLECULAR ELECTRONIC SENSORS FOR GENETIC
ANALYSIS BY PRIMER EXTENSION | | 63/137,469 | | | | METHODS FOR BONDING MOLECULES TO RUTHENIUM SURFACES | | 63/137,492 | | | | METHODS FOR BONDING MOLECULES TO RUTHENIUM SURFACES | | 63/137,508 | | | | MOLECULAR ELECTRONIC SENSORS FOR MULTIPLEX
GENETIC ANALYSIS USING DNA REPORTER TAGS | | 63/137,530 | | | | METHOD, SYSTEM AND APPARATUS FOR
AUTOMATED BASE-CALLER WITH DEEP LEARNING | | 63/142,701 | | | | Method and Apparatus for Molecular Electronic Detection | | 63/166,932 | | | | Molecular Electronics Actuator and Sensor Devices for Single
Cell Manipulation and Analysis | | 63/180,493 | | | | MOLECULAR ELECTRONICS SENSORS ON A
SCALABLE CMOS CHIP: A PLATFORM FOR SINGLE-
MOLECULE MEASUREMENTS OF BINDING KINETICS
AND ENZYME ACTIVITY | | 63/211,532 | | | | METHOD, SYSTEM AND APPARATUS FOR
BASECALLING | | 63/233,290 | | | | METHOD, SYSTEM AND APPARATUS FOR BASE
CALLING | | 63/254,522 | | | **RECORDED: 11/04/2021**