CH \$340.00 642707 # TRADEMARK ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 ETAS ID: TM809160 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|-------------------| | NATURE OF CONVEYANCE: | SECURITY INTEREST | ### **CONVEYING PARTY DATA** | Name | Formerly | Execution Date | Entity Type | |--------------------------|----------|----------------|-----------------------| | Velodyne Lidar USA, Inc. | | 05/09/2023 | Corporation: DELAWARE | ### **RECEIVING PARTY DATA** | Name: | Hercules Capital, Inc., as Agent | | | | | |-------------------|----------------------------------|--|--|--|--| | Street Address: | 400 Hamilton Avenue | | | | | | Internal Address: | Suite 310 | | | | | | City: | Palo Alto | | | | | | State/Country: | CALIFORNIA | | | | | | Postal Code: | 94301 | | | | | | Entity Type: | Corporation: MARYLAND | | | | | ### **PROPERTY NUMBERS Total: 13** | Number | Word Mark | | | | | | | | |---------|--|--|--|--|--|--|--|--| | 6427071 | ALPHA PRIME | | | | | | | | | 6031892 | ALPHA PUCK | | | | | | | | | 3662148 | HIGH DEFINITION LIDAR | | | | | | | | | 4508293 | | | | | | | | | | 5412410 | | | | | | | | | | 5672884 | REINVENTING THE DESIGNATED DRIVER | | | | | | | | | 6195530 | VELARRAY | | | | | | | | | 6480788 | VELLA | | | | | | | | | 6720493 | VELLA | | | | | | | | | 5077038 | VELODYNE | | | | | | | | | 5077034 | VELODYNE LIDAR | | | | | | | | | 6103935 | WORLD SAFETY SUMMIT ON AUTONOMOUS TECHNO | | | | | | | | | 5412485 | YOUR SAFETY IS WHAT DRIVES US | | | | | | | | | | 6427071
6031892
3662148
4508293
5412410
5672884
6195530
6480788
6720493
5077038
5077034
6103935 | | | | | | | | ### **CORRESPONDENCE DATA** Fax Number: Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. **Email:** julia.brow@us.dlapiper.com TRADEMARK REEL: 008066 FRAME: 0582 900771642 Correspondent Name: Julia Brow (DLA PIPER LLP) Address Line 1: 4365 Executive Drive Address Line 2: Suite 1100 Address Line 4: San Diego, CALIFORNIA 92121 | ATTORNEY DOCKET NUMBER: | 436515-000012 | |-------------------------|---------------| | NAME OF SUBMITTER: | Julia Brow | | SIGNATURE: | /Julia Brow/ | | DATE SIGNED: | 05/09/2023 | # **Total Attachments: 14** source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page1.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page3.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page3.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page5.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page5.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page7.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page8.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page9.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page10.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page11.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page12.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page12.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page13.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page13.tif source=Hercules - Ouster - Joinder - Intellectual Property Security Agreement [Executed]#page13.tif ### INTELLECTUAL PROPERTY SECURITY AGREEMENT THIS INTELLECTUAL PROPERTY SECURITY AGREEMENT ("Agreement") dated as May 9, 2023, is made by VELODYNE LIDAR USA, INC., a Delaware corporation, and each domestic Subsidiary signatory hereto (individually and collectively, the "Grantor"), in favor of HERCULES CAPITAL, INC., a Maryland corporation, in its capacity as administrative agent and collateral agent (together with its successors and assigns in such capacity, "Agent") for itself and the Lenders (as defined below). ### **RECITALS** - A. Grantor has entered into a Loan and Security Agreement with certain financial institutions party thereto (the "Lenders") and Agent, in its capacity as administrative agent and collateral agent for itself and the Lenders, dated as of the date hereof (as amended, restated, supplemented or otherwise modified from time to time, the "Loan Agreement"). All capitalized terms used but not defined herein shall have the respective meanings given to them in the Loan Agreement. - B. Pursuant to the terms of the Loan Agreement, Grantor has granted to Agent for its benefit and the benefit of the Lenders a security interest in all of Grantor's right, title and interest, whether presently existing or hereafter acquired, in, to and under all of the Collateral. NOW, THEREFORE, for good and valuable consideration, receipt of which is hereby acknowledged, and intending to be legally bound, as collateral security for the prompt and complete payment when due of its obligations under the Loan Agreement, Grantor hereby represents, warrants, covenants and agrees as follows: ### **AGREEMENT** - 1. <u>Grant of Security Interest.</u> To secure its obligations under the Loan Agreement, Grantor grants and pledges to Agent for its benefit and the benefit of the Lenders a security interest in all of Grantor's right, title and interest in, to and under its intellectual property (all of which shall collectively be called the "<u>Intellectual Property</u> Collateral"), including, without limitation, the following: - (a) Any and all copyright rights, copyright applications, copyright registrations and like protections in each work of authorship and derivative work thereof, whether published or unpublished and whether or not the same also constitutes a trade secret, now or hereafter existing, created, acquired or held, including without limitation those set forth on Exhibit A attached hereto (collectively, the "Copyrights"); - (b) Any and all trade secrets, and any and all intellectual property rights in computer software and computer software products now or hereafter existing, created, acquired or held; - (c) Any and all design rights that may be available to Grantor now or hereafter existing, created, acquired or held; - (d) All patents, patent applications and like protections including, without limitation, improvements, divisions, continuations, renewals, reissues, extensions, re-examination certificates, utility models, and continuations-in-part of the same, including without limitation the patents and patent applications set forth on $\underline{\text{Exhibit B}}$ attached hereto (collectively, the " $\underline{\text{Patents}}$ "); - (e) Any trademark and servicemark rights, whether registered or not, applications to register and registrations of the same and like protections, and the entire goodwill of the business of Grantor connected with and symbolized by such trademarks, including without limitation those set forth on Exhibit C attached hereto (collectively, the "Trademarks"); - (f) All mask works or similar rights available for the protection of semiconductor chips, now owned or hereafter acquired, including, without limitation those set forth on Exhibit D attached hereto (collectively, the "Mask Works"); - (g) Any and all claims for damages by way of past, present and future infringements of any of the rights included above, with the right, but not the obligation, to sue for and collect such damages for said use or infringement of the intellectual property rights identified above; - (h) All licenses or other rights to use any of the Copyrights, Patents, Trademarks, or Mask Works and all license fees and royalties arising from such use to the extent permitted by such license or rights; - (i) All amendments, renewals and extensions of any of the Copyrights, Trademarks, Patents, or Mask Works; and - (j) All proceeds and products of the foregoing, including without limitation all payments under insurance or any indemnity or warranty payable in respect of any of the foregoing. Notwithstanding the foregoing, the Intellectual Property Collateral does not include any Excluded Property. 2. <u>Recordation.</u> Grantor authorizes the Commissioner for Patents, the Commissioner for Trademarks and the Register of Copyrights and any other government officials to record and register this Agreement upon request by Agent. Grantor hereby authorizes Agent to (a) modify this Agreement unilaterally by amending the exhibits to this Agreement to include any Intellectual Property Collateral which Grantor obtains subsequent to the date of this Agreement and (b) file a duplicate original of this Agreement containing amended exhibits reflecting such new Intellectual Property Collateral. - 3. <u>Loan Documents</u>. This Agreement has been entered into pursuant to and in conjunction with the Loan Agreement, which is hereby incorporated by reference. The provisions of the Loan Agreement shall supersede and control over any conflicting or inconsistent provision herein. The rights and remedies of Agent with respect to the Intellectual Property Collateral are as provided by the Loan Agreement and related documents, and nothing in this Agreement shall be deemed to limit such rights and remedies. - 4. <u>Execution in Counterparts</u>. This Agreement and any amendments, waivers, consents or supplements hereto may be executed in any number of counterparts, and by different parties hereto in separate counterparts, each of which when so delivered shall be deemed an original, but all of which counterparts shall constitute but one and the same instrument. Delivery of an executed counterpart of a signature page of this Agreement by facsimile, portable document format (.pdf) or other electronic transmission will be as effective as delivery of a manually executed counterpart hereof. - 5. <u>Successors and Assigns.</u> The provisions of this Agreement shall inure to the benefit of the parties hereto and their respective successors and assigns. Grantor shall not assign its obligations under this Agreement without Agent's express prior written consent, and any such attempted assignment shall be void and of no effect. Agent may assign, transfer, or endorse its rights hereunder pursuant to the terms of the Loan Agreement without prior notice to Grantor, and all of such rights shall inure to the benefit of Agent's successors and assigns. - 6. <u>Governing Law.</u> This Agreement has been negotiated and delivered to Agent in the State of California, and shall have been accepted by Agent in the State of California. This Agreement shall be governed by, and construed and enforced in accordance with, the laws of the State of California, excluding conflict of laws principles that would cause the application of laws of any other jurisdiction. - 7. <u>Electronic Execution of Certain Other Documents</u>. The words "execution," "execute", "signed," "signature," and words of like import in or related to any document to be signed in connection with this Agreement and the transactions contemplated hereby (including without limitation assignments, assumptions, amendments, waivers and consents) shall be deemed to include electronic signatures, the electronic matching of assignment terms and contract formations on electronic platforms approved by the Agent, or the keeping of records in electronic form, each of which shall be of the same legal effect, validity or enforceability as a manually executed signature or the use of a paper-based recordkeeping system, as the case may be, to the extent and as provided for in any applicable law, including the Federal Electronic Signatures in Global and National Commerce Act, the New York State Electronic Signatures and Records Act, or any other similar state laws based on the Uniform Electronic Transactions Act. [Signature page follows.] IN WITNESS WHEREOF, the parties have caused this Intellectual Property Security Agreement to be duly executed by its officers thereunto duly authorized as of the first date written above. | GR | Α | M | Т | \sim | D | ٠ | |----|-----|----|---|--------|-----|---| | UL | /-1 | ΙV | Ł | v | IV. | ٠ | VELODYNE LIDAR USA, INC., a Delaware corporation Mark Winswig By: Mark Weinswig Title: Chief Financial Officer ### AGENT: HERCULES CAPITAL, INC., a Maryland corporation, in its capacity as administrative agent and collateral agent By: Zhuo Huang Title: Associate General Counsel | EXHIBIT A | ١ | |-----------|---| |-----------|---| Copyrights None. # EXHIBIT B # Patents | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|---------------------|--------------------------------|---------------|---------------------|---------------|---| | United States of
America | 62/4801
19 | 31-Mar-
2017 | | | | Expired | INTEGRATED LIDAR ILLUMINATION POWER CONTROL | | United States of
America | 15/9413
02 | 30-Mar-
2018 | 2018028
4227 | 1038646
5 | 20-
Aug-
2019 | Granted | INTEGRATED LIDAR ILLUMINATION POWER CONTROL | | United States of
America | 16/5106
80 | 12-Jul-
2019 | 2019033
9365 | 1062749
1 | 21-Apr-
2020 | Granted | INTEGRATED LIDAR ILLUMINATION POWER CONTROL | | United States of
America | 16/5107
10 | 12-Jul-
2019 | 2020019
1915 | | | Publishe
d | INTEGRATED LIDAR ILLUMINATION POWER CONTROL | | United States of
America | 16/5107
49 | 12-Jul-
2019 | 2019036
1092 | | | Abando
ned | INTEGRATED LIDAR ILLUMINATION POWER CONTROL | | United States of
America | 62/2892
78 | 31-Jan-
2016 | | | | Expired | LIDAR BASED 3-D IMAGING WITH FAR-FIELD ILLUMINATION OVERLAP | | United States of
America | 15/4203
66 | 31-Jan-
2017 | US
2018-
0164408 | | | Allowed | LIDAR Based 3-D Imaging With Far-Field Illumination Overlap | | United States of
America | 62/3106
70 | 19-Mar-
2016 | | | | Expired | INTEGRATED ILLUMINATION AND DETECTION FOR LIDAR BASED 3-D IMAGING | | United States of
America | 15/4203
84 | 31-Jan-
2017 | US
2017-
0269215 | 1001872
6 | 10-Jul-
2018 | Granted | INTEGRATED ILLUMINATION AND DETECTION FOR LIDAR BASED 3-D IMAGING | | United States of
America | 16/0307
80 | 09-Jul-
2018 | US-
2019-
0302266
-A9 | 1107361
7 | 27-Jul-
2021 | Granted | INTEGRATED ILLUMINATION AND DETECTION FOR LIDAR BASED 3-D IMAGING | | United States of
America | 17/3550
51 | 22-Jun-
2021 | 2022002
6575 | | | Publishe
d | INTEGRATED ILLUMINATION AND DETECTION FOR LIDAR BASED 3-D IMAGING | | United States of
America | 61/1832
65 | 02-Jun-
2009 | | | | Expired | COLOR LIDAR SYSTEM | | United States of
America | 12/7926
36 | 02-Jun-
2010 | US
2010-
0302528
-A1 | 8675181 | 18-Mar-
2014 | Granted | COLOR LIDAR SCANNER | | United States of
America | 11/7778
02 | 13-Jul-
2007 | 2010002
0306 | 7969558 | 28-Jun-
2011 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 60/8073
05 | 13-Jul-
2006 | | | | Expired | HIGH DEFINITION LIDAR | | United States of
America | 61/3455
05 | 17-
May-
2010 | | | | Expired | ULTRA DEFINITION LIDAR | | United States of
America | 13/1099
01 | 17-
May-
2011 | 2011021
6304 | 8767190 | 01-Jul-
2014 | Granted | ULTRA DEFINITION LIDAR | | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|---------------------|--------------------------|---------------|---------------------|---------------|---| | United States of
America | 15/1805
80 | 13-Jun-
2016 | | RE4667
2 | 16-Jan-
2018 | Granted | ULTRA DEFINITION LIDAR | | United States of
America | 15/7005
43 | 11-Sep-
2017 | | RE4794
2 | 14-Apr-
2020 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 15/7005
58 | 11-Sep-
2017 | | RE4866
6 | 03-
Aug-
2021 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 15/7005
71 | 11-Sep-
2017 | | RE4850 | 06-Apr-
2021 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 15/7008
36 | 11-Sep-
2017 | | RE4850
4 | 06-Apr-
2021 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 15/7008
44 | 11-Sep-
2017 | | RE4849
0 | 30-Mar-
2021 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 15/7009
59 | 11-Sep-
2017 | | RE4868
8 | 17-
Aug-
2021 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 15/7009
65 | 11-Sep-
2017 | | RE4849
1 | 30-Mar-
2021 | Granted | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 16/9126
48 | 25-Jun-
2020 | | | | Abando
ned | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | | | | | | Unfiled | HIGH DEFINITION LIDAR SYSTEM | | United States of
America | 62/4736
28 | 20-Mar-
2017 | | | | Expired | LIDAR BASED 3-D IMAGING WITH
STRUCTURED LIGHT AND INTEGRATED
ILLUMINATION AND DETECTION | | United States of
America | 15/9260
95 | 20-Mar-
2018 | 2018026
7151 | 1033078
0 | 25-Jun-
2019 | Granted | LIDAR BASED 3-D IMAGING WITH
STRUCTURED LIGHT AND INTEGRATED
ILLUMINATION AND DETECTION | | United States of
America | 62/3112
90 | 21-Oct-
2016 | | | | Expired | LIDAR BASED 3-D IMAGING WITH VARYING ILLUMINATION FIELD DENSITY | | United States of
America | 15/4642
27 | 20-Mar-
2017 | US2017-
0269198
A1 | 9983297 | 29-
May-
2018 | Granted | LIDAR BASED 3-D IMAGING WITH VARYING ILLUMINATION FIELD DENSITY | | United States of
America | 62/3112
96 | 21-Mar-
2016 | | | | Expired | LIDAR BASED 3-D IMAGING WITH VARYING ILLUMINATION INTENSITY | | United States of
America | 15/4642
34 | 20-Mar-
2017 | 2017026
9197 | 1019766
9 | 05-Feb-
2019 | Granted | LIDAR BASED 3-D IMAGING WITH VARYING ILLUMINATION INTENSITY | | United States of
America | 62/3112
83 | 21-Mar-
2016 | | | | Expired | LIDAR BASED 3-D IMAGING WITH VARYING PULSE REPETITION | | United States of
America | 15/4642
21 | 20-Mar-
2017 | 2017026
9209 | 1004837
4 | 14-
Aug-
2018 | Granted | LIDAR BASED 3-D IMAGING WITH VARYING PULSE REPETITION | | United States of
America | 62/5032
37 | 08-
May-
2017 | | | | Expired | LIDAR DATA ACQUISITION AND CONTROL | | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|---------------------|--------------------------|---------------|---------------------|---------------|--| | United States of
America | 15/9745
27 | 08-
May-
2018 | US2018-
0321360
A1 | 1054522
2 | 28-Jan-
2020 | Granted | LIDAR DATA ACQUISITION AND CONTROL | | United States of
America | 16/7484
98 | 21-Jan-
2020 | 2020016
6613 | | | Allowed | LIDAR DATA ACQUISITION AND CONTROL | | United States of
America | 16/9870
60 | 06-
Aug-
2020 | 2020037
9094 | 1143544
6 | 06-Sep-
2022 | Granted | LIDAR SIGNAL ACQUISITION | | United States of
America | 62/5597
83 | 18-Sep-
2017 | | | | Expired | LIDAR SIGNAL ACQUISITION | | United States of
America | 16/1340
00 | 18-Sep-
2018 | US2019-
0178992
A1 | 1073944
4 | 11-
Aug-
2020 | Granted | LIDAR SIGNAL ACQUISITION | | United States of
America | 17/2346
72 | 19-Apr-
2021 | 2021040
5196 | | | Publishe
d | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 62/3442
59 | 01-Jun-
2016 | | | | Expired | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 15/6109
75 | 01-Jun-
2017 | 2018000
2045 | 1039387
7 | 27-
Aug-
2019 | Granted | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 16/5461
31 | 20-
Aug-
2019 | 2020014
2070 | | | Publishe
d | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 16/5461
84 | 20-
Aug-
2019 | 2019036
9257 | 1098321
8 | 20-Apr-
2021 | Granted | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 16/5462
06 | 20-
Aug-
2019 | 2019036
9258 | | | PUB:
RCE | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 16/9093
06 | 23-Jun-
2020 | 2020031
9343 | 1156130
5 | 24-Jan-
2023 | Granted | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 16/8424
91 | 07-Apr-
2020 | 2020023
3089 | 1155005
6 | 10-Jan-
2023 | Granted | MULTIPLE PIXEL SCANNING LIDAR | | United States of
America | 16/8547
55 | 21-Apr-
2020 | 2020024
9321 | 1113748
0 | 05-Oct-
2021 | Granted | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 16/9058
43 | 18-Jun-
2020 | 2020031
9310 | | | Allowed | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 16/9058
49 | 18-Jun-
2020 | 2020031
9311 | 1155003
6 | 10-Jan-
2023 | Granted | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 16/9098
46 | 23-Jun-
2020 | 2020031
9312 | | | Publishe
d | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 62/2892
77 | 31-Jan-
2016 | | | | Expired | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 15/3397
90 | 31-Oct-
2016 | 2017021
9695 | 1062749
0 | 21-Apr-
2020 | Granted | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 17/4937
91 | 04-Oct-
2021 | | | | Abando
ned | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|---------------------|--------------------------|---------------|-----------------|----------------|--| | United States of
America | | | | | | Unfiled | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | | | | | | Unfiled | MULTIPLE PULSE, LIDAR BASED 3-D
IMAGING | | United States of
America | 62/5582
56 | 13-Sep-
2017 | | | | Expired | MULTIPLE RESOLUTION, SIMULTANEOUS LOCALIZATION AND MAPPING BASED ON 3-D LIDAR MEASUREMENTS | | United States of
America | 16/1306
10 | 13-Sep-
2018 | US2019-
0079193
A1 | | | Allowed | MULTIPLE RESOLUTION, SIMULTANEOUS LOCALIZATION AND MAPPING BASED ON 3-D LIDAR MEASUREMENTS | | United States of
America | 16/9099
26 | 23-Jun-
2020 | 2020031
9338 | 1125572
8 | 22-Feb-
2022 | Granted | SYSTEMS AND METHODS FOR EFFICIENT
MULTI-RETURN LIGHT DETECTORS | | United States of
America | 15/8353
74 | 07-Dec-
2017 | 2019017
9018 | 1069077
3 | 23-Jun-
2020 | Granted | SYSTEMS AND METHODS FOR EFFICIENT
MULTI-RETURN LIGHT DETECTORS | | United States of
America | 17/6759
97 | 18-Feb-
2022 | 2023000
3579 | | | Publishe
d | SYSTEMS AND METHODS FOR EFFICIENT
MULTI-RETURN LIGHT DETECTORS | | United States of
America | | | | | | Unfiled | SYSTEMS AND METHODS FOR EFFICIENT
MULTI-RETURN LIGHT DETECTORS | | United States of
America | 17/7131
21 | 04-Apr-
2022 | 2023005
2333 | | | Publishe
d | SYSTEMS AND METHODS FOR IMPROVING
DETECTION OF A RETURN SIGNAL IN A
LIGHT RANGING AND DETECTION SYSTEM | | United States of
America | 15/8359
83 | 08-Dec-
2017 | 2019017
8991 | 1129404
1 | 05-Apr-
2022 | Granted | SYSTEMS AND METHODS FOR IMPROVING
DETECTION OF A RETURN SIGNAL IN A
LIGHT RANGING AND DETECTION SYSTEM | | United States of
America | 16/9312
18 | 16-Jul-
2020 | 2020034
8401 | | | To be
Aband | SYSTEMS AND METHODS FOR IMPROVING
DETECTION OF A RETURN SIGNAL IN A
LIGHT RANGING AND DETECTION SYSTEM | | United States of
America | 15/8034
94 | 03-
Nov-
2017 | 2019013
7549 | | | Publishe
d | SYSTEMS AND METHODS FOR MULTI-TIER
CENTROID CALCULATION | | United States of
America | 62/2602
05 | 25-
Nov-
2015 | | | | Expired | THREE DIMENSIONAL LIDAR SYSTEM WITH TARGETED FIELD OF VIEW | | United States of
America | 15/3609
03 | 23-
Nov-
2016 | 2017014
6640 | 1053966
1 | 21-Jan-
2020 | Granted | THREE DIMENSIONAL LIDAR SYSTEM WITH TARGETED FIELD OF VIEW | | United States of
America | 16/7468
96 | 19-Jan-
2020 | 2020015
0242 | | | Publishe
d | THREE DIMENSIONAL LIDAR SYSTEM WITH TARGETED FIELD OF VIEW | | United States of
America | 16/4595
57 | 01-Jul-
2019 | | 1061320
3 | 07-Apr-
2020 | Granted | INTERFERENCE MITIGATION FOR LIGHT DETECTION AND RANGING | | United States of
America | 16/8415
06 | 06-Apr-
2020 | 2021000
3681 | | | Publishe
d | INTERFERENCE MITIGATION FOR LIGHT DETECTION AND RANGING | | United States of
America | 16/1122
73 | 24-
Aug-
2018 | 2020006
4452 | | | Publishe
d | SYSTEMS AND METHODS FOR MITIGATING
OPTICAL CROSSTALK IN A LIGHT RANGING
AND DETECTION SYSTEM | | United States of
America | 16/1347
80 | 18-Sep-
2018 | 2020008
8844 | | | Publishe
d | SYSTEMS AND METHODS FOR IMPROVING
DETECTION OF A RETURN SIGNAL IN A | | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|--------------------------|---------------------|---------------|---------------------|---------------|--| | | | | | | | | LIGHT RANGING AND DETECTION SYSTEM WITH PULSE ENCODING | | United States of
America | 17/3920
62 | 02-
Aug-
2021 | 2021036
7563 | | | Publishe
d | SYSTEMS AND METHODS FOR TIA BASE CURRENT DETECTION AND COMPENSATION | | United States of
America | 16/1815
23 | 06-
Nov-
2018 | 2020014
4971 | 1108201
0 | 03-
Aug-
2021 | Granted | SYSTEMS AND METHODS FOR TIA BASE CURRENT DETECTION AND COMPENSATION | | United States of
America | 16/1283
73 | 11-Sep-
2018 | 2020008
1104 | 1149361
5 | 08-
Nov-
2022 | Granted | SYSTEMS AND METHODS FOR DETECTING
AN ELECTROMAGNETIC SIGNAL IN A
CONSTANT INTERFERENCE ENVIRONMENT | | United States of
America | 16/2418
25 | 07-Jan-
2019 | 2020021
8260 | 1132749
0 | 10-
May-
2022 | Granted | DYNAMIC CONTROL AND CONFIGURATION OF AUTONOMOUS NAVIGATION SYSTEMS | | United States of
America | 16/2418
49 | 07 - Jan-
2019 | 2020021
8062 | | | Publishe
d | SYSTEMS AND METHODS FOR A DUAL AXIS RESONANT SCANNING MIRROR | | United States of
America | 16/2419
56 | 07-Jan-
2019 | 2020021
7959 | 1144875
6 | 20-Sep-
2022 | Granted | APPLICATION SPECIFIC INTEGRATED
CIRCUITS FOR LIDAR SENSOR AND MULTI-
TYPE SENSOR SYSTEMS | | United States of
America | | | | | | Unfiled | SYSTEMS AND METHODS FOR A CONFIGURABLE SENSOR SYSTEM | | United States of
America | 16/2419
63 | 07-Jan-
2019 | 2020021
7954 | | | Publishe
d | SYSTEMS AND METHODS FOR A CONFIGURABLE SENSOR SYSTEM | | United States of
America | 62/8514
47 | 22-
May-
2019 | | | | Expired | CONDUCTIVE ALIGNMENT ELEMENT FOR LIDAR SYSTEMS | | United States of
America | 16/8819
66 | 22-
May-
2020 | 2020037
9117 | 1116926
7 | 09-
Nov-
2021 | Granted | APPARATUS AND METHODS FOR ALIGNING DEVICES FOR LIDAR SYSTEMS | | United States of
America | 17/5214
30 | 08-
Nov-
2021 | 2022005
7510 | | | Publishe
d | APPARATUS AND METHODS FOR ALIGNING DEVICES FOR LIDAR SYSTEMS | | United States of
America | 17/0174
67 | 10-Sep-
2020 | 2021023
18096 | | | Publishe
d | SYSTEMS AND METHODS FOR MITIGATING
AVALANCHE PHOTODIODE (APD) BLINDING | | United States of
America | 15/8981
32 | 15-Feb-
2018 | 2019025
0256 | 1077548
6 | 15-Sep-
2020 | Granted | SYSTEMS AND METHODS FOR MITIGATING
AVALANCHE PHOTODIODE (APD) BLINDING | | United States of
America | 15/8978
14 | 15-Feb-
2018 | 2019025
2916 | 1053018
5 | 07-Jan-
2020 | Granted | SYSTEMS AND METHODS FOR
TRANSMITTING DATA VIA A CONTACTLESS
CYLINDRICAL INTERFACE | | United States of
America | 16/7355
48 | 06-Jan-
2020 | 2020014
4859 | 1123148
7 | 25-Jan-
2022 | Granted | SYSTEMS AND METHODS FOR
TRANSMITTING DATA VIA A CONTACTLESS
CYLINDRICAL INTERFACE | | United States of
America | 17/5831
06 | 24-Jan-
2022 | 2022014
6642 | | | Publishe
d | SYSTEMS AND METHODS FOR
TRANSMITTING DATA VIA A CONTACTLESS
CYLINDRICAL INTERFACE | | United States of
America | 16/9884
20 | 07-
Aug-
2020 | 2021004
1567 | | | Allowed | APPARATUS AND METHODS FOR SAFE PULSED LASER OPERATION | | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|---------------------|---------------------|---------------|---------------------|---------------|---| | United States of
America | 62/8841
02 | 07-
Aug-
2019 | | | | Expired | APPARATUS AND METHODS FOR OPTICAL
POWER CONTROL FOR EYE SAFE PULSED
LASER OPERATION | | United States of
America | 62/615,8
77 | 10-Jan-
2018 | | | | Expired | LIDAR BASED DISTANCE MEASUREMENTS
WITH TIERED POWER CONTROL | | United States of
America | 16/2449
80 | 10-Jan-
2019 | 2020002
5896 | 1141568
1 | 16-
Aug-
2022 | Granted | LIDAR BASED DISTANCE MEASUREMENTS
WITH TIERED POWER CONTROL | | United States of
America | 17/8879
67 | 15-
Aug-
2022 | 2023004
2797 | | | Publishe
d | LIDAR BASED DISTANCE MEASUREMENTS
WITH TIERED POWER CONTROL | | United States of
America | 16/8909
51 | 02-Jun-
2020 | 2020029
2678 | | | Allowed | MULTI-CHANNEL LIDAR ILLUMINATION DRIVER | | United States of
America | 16/1340
68 | 18-Sep-
2018 | 2020008
8851 | 1071243
4 | 14-Jul-
2020 | Granted | MULTI-CHANNEL LIDAR ILLUMINATION DRIVER | | United States of
America | 16/8521
28 | 17-Apr-
2020 | 2021032
5520 | | | Publishe
d | SYSTEMS AND METHODS FOR CALIBRATING
A LIDAR DEVICE | | United States of
America | 17/2403
07 | 26-Apr-
2021 | 2021024
8768 | | | Publishe
d | GENERATION OF STRUCTURED MAP DATA
FROM VEHICLE SENSORS AND CAMERA
ARRAYS | | United States of
America | 16/2545
08 | 22-Jan-
2019 | 2020023
4459 | 1100422
4 | 11-
May-
2021 | Granted | GENERATION OF STRUCTURED MAP DATA
FROM VEHICLE SENSORS AND CAMERA
ARRAYS | | United States of
America | 62/5354
28 | 21-Jul-
2017 | | | | Expired | CAMERA-BASED, REGISTERED 3D POINT
CLOUD GENERATION SYSTEM | | United States of
America | 17/3182
23 | 12-
May-
2021 | 2022036
5213 | | | Publishe
d | LINEARIZATION OF CHIRP IN COHERENT
LIDAR SYSTEMS | | United States of
America | 17/3184
41 | 12-
May-
2021 | 2022036
5184 | | | Publishe
d | SYSTEMS AND METHODS FOR CHIRP
LINEARIZATION USING TWO CONTINUOUS
WAVE (CW) LASERS | | United States of
America | 17/3185
35 | 12-
May-
2021 | 2022036
5185 | | | Publishe d | SYSTEMS AND METHODS FOR CHIRP
LINEARIZATION USING PARTIAL FIELD-OF-
VIEW (FOV) AS A REFERENCE REFLECTOR | | United States of
America | 17/3186
24 | 12-
May-
2021 | 2022037
3681 | | | Publishe d | SYSTEMS AND METHODS FOR CHIRP
LINEARIZATION USING A PARTIAL
REFLECTOR AS A REFERENCE REFLECTOR | | United States of
America | 17/3187
68 | 12-
May-
2021 | 2022037
3667 | | | Publishe
d | SYSTEMS AND METHODS FOR CHIRP
LINEARIZATION USING EXTERNAL
REFLECTOR(S) AS A REFERENCE REFLECTOR | | United States of
America | | | | | | Unfiled | IN-SITU LINEARIZATION OF CHIRP USING A SECONDARY CW LASER FOR COHERENT LIDARS | | United States of
America | 63/0251
38 | 14-
May-
2020 | | | | Expired | 3D LIDAR WITH SCANNING MIRROR
MECHANISM | | Country Name | Applica tion No. | Filing
Date | Publica
tion No. | Patent
No. | Patent
Date | Status | Title | |-----------------------------|------------------|---------------------|---------------------|---------------|-----------------|---------------|--| | United States of
America | 17/3920
80 | 02-
Aug-
2021 | 2021036
4609 | | | Publishe
d | SCANNING MIRROR MECHANISMS FOR
LIDAR SYSTEMS, AND RELATED METHODS
AND APPARATUS | | United States of
America | | | | | | Unfiled | APPARATUS AND METHODS FOR SAFE PULSED LASER OPERATION | | United States of
America | | | | | | Unfiled | LASER RADAR | | United States of
America | 17/2559
48 | 23-Dec-
2020 | 2021036
4608 | | | Publishe d | LASER RADAR | | United States of
America | 16/8271
82 | 23-Mar-
2020 | 2020037
9096 | 1090826
8 | 02-Feb-
2021 | Granted | METHOD FOR IDENTIFICATION OF A NOISE POINT USED FOR LIDAR, AND LIDAR SYSTEM | | United States of
America | 17/1461
77 | 11-Jan-
2021 | 2021020
8261 | | | Publishe
d | METHOD FOR IDENTIFICATION OF A NOISE POINT USED FOR LIDAR, AND LIDAR SYSTEM | | United States of
America | 17/4706
12 | 09-Sep-
2021 | 2022007
5038 | | | Publishe d | APPARATUS AND METHODS FOR LONG
RANGE, HIGH RESOLUTION LIDAR | | United States of
America | 63/0763
45 | 09-Sep-
2020 | | | | Expired | APPARATUS AND METHODS FOR LONG
RANGE, HIGH RESOLUTION LIDAR | | United States of
America | 63/1691
74 | 31-Mar-
2021 | | | | Expired | HIGH-RANGE, LOW-POWER LIDAR SYSTEMS,
AND RELATED METHODS AND APPARATUS | | United States of
America | 17/3068
85 | 03-
May-
2021 | 2022035
0000 | | | Publishe
d | LIDAR SYSTEMS FOR NEAR-FIELD AND FAR-
FIELD DETECTION, AND RELATED METHODS
AND APPARATUS | | United States of
America | 17/7109
56 | 31-Mar-
2022 | 2022032
6763 | | | Publishe
d | LIDAR-BASED IMMERSIVE 3D REALITY
CAPTURE SYSTEMS, AND RELATED
METHODS AND APPARATUS | | United States of
America | 63/2789
98 | 12-
Nov-
2021 | | | | Expired | LIDAR-BASED IMMERSIVE 3D REALITY
CAPTURE SYSTEMS, AND RELATED
METHODS AND APPARATUS | | United States of
America | 63/1691
80 | 31-Mar-
2021 | | | | Expired | LIDAR-BASED IMMERSIVE 3D REALITY
CAPTURE SYSTEMS, AND RELATED
METHODS AND APPARATUS | | United States of
America | 63/2398
07 | 01-Sep-
2021 | | | | Expired | HIGH RESOLUTION COHERENT LIDAR
SYSTEMS, AND RELATED METHODS AND
APPARATUS | # EXHIBIT C # Trademarks | COUNTRY | TRADEMARK | STATUS | APP
DATE | APP NO | REG
DATE | REG NO | |---------------|---|------------|-----------------|------------|-----------------|---------| | United States | ALPHA PRIME
(Class 9) | Registered | Oct 29,
2020 | 90286530 | Jul 20,
2021 | 6427071 | | United States | ALPHA PUCK
(CLASS 9) | Registered | Jan 15,
2019 | 88/261,829 | Apr 14,
2020 | 6031892 | | United States | HIGH
DEFINITION
LIDAR (Class 9) | Registered | Mar 31,
2008 | 77/436,186 | Jul 28,
2009 | 3662148 | | United States | MISCELLANEOUS
DESIGN
(HOUSING) (Class
9) | Registered | Jun 12,
2012 | 85/649,245 | Apr 1, 2014 | 4508293 | | United States | MISCELLANEOUS
DESIGN (PUCK)
(CLASS 9) | Registered | Jul 31,
2017 | 87/550,092 | Feb 27,
2018 | 5412410 | | United States | REINVENTING
THE
DESIGNATED
DRIVER (CLASS
42) | Registered | Feb 22,
2018 | 87/807,783 | Feb 12,
2019 | 5672884 | | United States | VELARRAY
(CLASS 42) | Registered | Sep 7, 2017 | 87/600,211 | Nov 10,
2020 | 6195530 | | United States | VELLA (Class 42) | Registered | Jun 23,
2020 | 90017318 | Sep 7, 2021 | 6480788 | | United States | VELLA (Class 9) | Registered | Oct 29,
2020 | 90286561 | May 3,
2022 | 6720493 | | United States | VELODYNE
(CLASS 9) | Registered | Mar 16,
2016 | 86/942,880 | Nov 8,
2016 | 5077038 | | United States | VELODYNE
LIDAR (Class 9) | Registered | Mar 16,
2016 | 86/942,851 | Nov 8,
2016 | 5077034 | | United States | WORLD SAFETY
SUMMIT ON
AUTONOMOUS
TECHNOLOGY
(Class 41) | Registered | Nov 5,
2019 | 88680835 | Jul 14,
2020 | 6103935 | | United States | YOUR SAFETY IS
WHAT DRIVES
US (CLASS 42) | Registered | Aug 1,
2017 | 87/552,035 | Feb 27,
2018 | 5412485 | | EX | HT | ΒĪ | Т | D | |----|----|----|---|---| | | | | | | Mask Works None. TRADEMARK REEL: 008066 FRAME: 0597 **RECORDED: 05/09/2023**